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ABSTRACT

Let G be an infinite pro-p-group of finite coclass and let M(G) be its

Schur multiplicator. For p > 2, we determine the isomorphism type of

Hom(M(G), Zp), where Zp denotes the p-adic integers, and show that

M(G) is infinite. For p = 2, we investigate the Schur multiplicators of the

infinite pro-2-groups of small coclass and show that M(G) can be infinite,

finite or even trivial.

1. Introduction

The infinite pro-p-groups of finite coclass play a central role in the classification

and investigation of finite p-groups by coclass. In particular, as shown in [3], the

Schur multiplicators of the infinite pro-p-groups of coclass r have a significant

influence on the Schur multiplicators of the finite p-groups of coclass r so that

it is of interest to determine the infinite pro-p-groups of finite coclass with finite

or even trivial Schur multiplicator. It is the aim of this paper to investigate this

problem.

Let G be an infinite pro-p-group of finite coclass. Consider the series G ≥

C > T > N , where N is the hypercenter of G, the factor T/N is the Fitting

subgroup of G/N , and C/T is the center of G/T . Then C/T is cyclic of order

pt for some t ≥ 1. (See Section 2 for background.) We call t the central

exponent of G.
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The Schur multiplicator M(G) of an infinite pro-p-group of finite coclass is

defined as M(G) = H2(G, Zp), where Zp denotes the p-adic integers. The

pro-p-group M(G) is abelian of finite rank and hence has the form M(G) =

T (G) × F (G), where T (G) is a finite p-group and F (G) ∼= Zl
p for some l ∈ N0.

As Hom(M(G), Zp) ∼= Zl
p, it follows that l can also be characterised as the rank

of Hom(M(G), Zp). We call l the torsion-free rank of M(G) and denote it

by tf(M(G)).

The central aim of this paper is to prove the following theorem.

Theorem A: Let p > 2 and let G be an infinite pro-p-group of finite coclass

with central exponent t. Then tf(M(G)) = pt−1(p − 1)/2 and thus M(G) is

infinite.

This theorem is not valid for p = 2. For example, the infinite pro-2-group

〈a, t | a2
r

= 1, ta = t−1〉 ∼= Z2 o C2r

has coclass r and trivial Schur multiplicator. We include a list of the Schur

multiplicators of all infinite pro-2-groups of coclass at most 3 below. (See Sec-

tion 7.)

2. Preliminaries

In this section we briefly recall the well-known structure of infinite pro-p-groups

of finite coclass and we outline various details on the series introduced in Sec-

tion 1.

1 Theorem: Let p > 2 and let G be an infinite pro-p-group of coclass r with

series G ≥ C > T > N as defined in Section 1. Then

(a) N is finite of order pm for some m < r and G/N has coclass r − m.

(b) T/N ∼= Zd
p with d = ps−1(p − 1) for some s ∈ {1, . . . , r − m}.

(c) G/T is a finite non-trivial p-group which embeds into GL(d, Zp).

(d) C/T is cyclic of order pt for some t ∈ {1, . . . , s}.

Proof. (a) See [4], Lemma 7.4.4.

(b)+(c) See [4], Theorem 7.4.12.

(d) As G/T is a finite non-trivial p-group, its center C/T is non-trivial. By

[4], Theorem 7.4.12, The group G/T acts irreducibly on T ⊗ Qp and hence
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has a cyclic centre. As the maximal dimension of an irreducible faithful Qp-

representation of the cyclic group of order pt has dimension pt−1(p−1), it follows

that 1 ≤ t ≤ s.

3. A cohomological characterisation

As a first step towards our aim, we characterise the torsion-free rank of the Schur

multiplicator of an infinite pro-p-group with finite coclass using cohomology.

2 Theorem: Let G be a pro-p-group of finite coclass. Then tf(M(G)) =

tf(H2(G, Zp)).

Proof. The Universal Coefficients Theorem (see [6], page 349) yields that

H2(G, Zp) is an extension of Ext(G/G′, Zp) by Hom(M(G), Zp). As G/G′ is

finite, it follows that Ext(G/G′, Zp) is finite and hence the result follows.

4. Finite extensions and subgroups of finite index

The following theorem reduces the proof of the main theorem of this paper to

the case of infinite pro-p-groups with finite coclass and trivial hypercenter.

3 Theorem: Let G be an infinite pro-p-group of finite coclass and let L be a

finite central subgroup in G. Then tf(M(G)) = tf(M(G/L)).

Proof. We consider the 5-term homology and cohomology sequences (see [4],

Corollary 9.4.12). These imply the following two exact sequences:

M(G) → M(G/L) → L and H1(L, Zp)
G → H2(G/L, Zp) → H2(G, Zp).

The first sequence yields that tf(M(G)) ≥ tf(M(G/L)), since L is finite. The

second sequence and Theorem 2 imply that tf(M(G)) ≤ tf(M(G/L)), since

H1(L, Zp) is finite. In summary, we obtain that tf(M(G)) = tf(M(G/L)) as

desired.

The next theorem considers normal subgroups of finite index of infinite pro-

p-groups with finite coclass. It yields an important tool towards the proof of

the main theorem of this paper.

4 Theorem: Let G be an infinite pro-p-group of finite coclass and let N be a

normal subgroup of finite index in G. Then G/N acts naturally on M(N) with

image M(N)G/N and tf(M(G)) = tf(M(N)/M(N)G/N ).
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Proof. We consider the Lyndon–Hochschild–Serre spectral sequence for

H2(G, Zp) using N as normal subgroup; We refer to [9] for background. The

E2-terms in this sequence are E2
pq = Hp(G/N, Hq(N, Zp)). As G/N is finite,

it follows that E2
pq is finite for all p > 0. This implies that Er

pq is finite for all

p > 0 and r ≥ 2 and it yields that tf(Er
0q) = tf(E2

0q) for all q and r ≥ 2. Hence

we obtain that tf(H2(G, Zp)) = tf(E∞
02 ) = tf(E2

02) = tf(H0(G/N, H2(N, Zp)) =

tf(M(N)/M(N)G/N ) as desired.

5. Space groups

Let G be an infinite pro-p-group with finite coclass and trivial hypercenter.

Then G is an extension of a maximal abelian normal subgroup T by a finite

p-group P which acts faithfully on T . Thus G has the structure of a space group

with translation subgroup T and point group P .

Let V = T ⊗ Qp. Then V and its tensor square V ⊗ V are natural modules

for P . The module V ⊗ V splits as QpP -module into a symmetric and an

antisymmetric part which we denote by V ⊗V = (V ∨V )⊕(V ∧V ). The subspace

of fixed points under the action of P in V ∧ V is denoted by FixP (V ∧ V ).

5 Theorem: Let G be an infinite pro-p-group with finite coclass and triv-

ial hypercenter. Let P be its point group, T its translation subgroup and

V = T ⊗ Qp. Then tf(M(G)) = dim(FixP (V ∧ V )).

Proof. Note that M(T ) ∼= T ∧ T as P -module and thus tf(M(T )/M(T )P ) =

dim((V ∧ V )/(V ∧ V )P ) = dim(FixP (V ∧ V )), since V ∧ V is semisimple as

P -module. Now the result follows directly from Theorem 4.

Next, we investigate the fixed points FixP (V ∧V ) in more detail. The follow-

ing theorem together with Theorems 5 and 3 complete the proof for the main

Theorem A of this paper.

6 Theorem: Let p > 2 and let P be the point group of an infinite pro-p-

group G with finite coclass, trivial hypercenter and central exponent t. Then

dim(FixP (V ∧ V )) = pt−1(p − 1)/2.

Proof. Let ds = ps−1(p − 1) be the dimension of G and let q = ps−t = ds/dt

with dt = pt−1(p− 1). Let Ut(s) ∼= Cpt oPs−t ≤ GL(ds, Qp), where Cpt is cyclic

of order pt and Ps−t is a Sylow p-group subgroup of Sym(q). Let C denote the
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center of P . Then by [2], Theorems 17 and 19, it follows that P is conjugate

to a subgroup of Ut(s) such that C conjugates to the center of Ut(s) and thus

to the diagonal subgroup of the base group of the wreath product. We assume

in the following that P ≤ Ut(s) with C = Z(P ) = Z(Ut(s)). Let Qp be the

algebraic closure of Qp and let V = V ⊗ Qp.

The the character ϕ of C on V has the form ϕ = q(ϕ1 + · · · + ϕdt
), where

ϕ1, . . . , ϕdt
are the dt different faithful characters of C over Qp. This yields

that ϕ2 = q2
∑

1≤i,j≤dt
ϕiϕj . Note that for every i ∈ {1, . . . , dt} there exists a

unique j 6= i with ϕj = ϕi. Thus

[ϕ2, 1] = q2
∑

1≤i,j≤dt

[ϕiϕj , 1] = q2
∑

1≤i,j≤dt

[ϕi, ϕj ] = q2dt

which yields that dim(FixC(V ⊗ V )) = q2dt. Further, ϕ ∧ϕ =
∑

1≤i<j≤dt
ϕiϕj

and hence

[ϕ ∧ ϕ, 1] = q2
∑

1≤i<j≤dt

[ϕiϕj , 1] = q2
∑

1≤i<j≤dt

[ϕi, ϕj ] = q2dt/2

which yields that dim(FixC(V ∧ V )) = q2dt/2.

The character χ of P on V has the form χ = χ1 + · · · + χdt
, where χi is

irreducible with χi|C = qϕi. Let V = V 1 ⊕ · · · ⊕ V dt
be the corresponding

decomposition of V into irreducible modules. We fix i ∈ {1, . . . , dt} and investi-

gate the action of P on W = V i. Let w be a pt-th primitive root of unity in Qp.

As P ≤ Ut(s), it follows that every element g of P acts as g = ah on W , where

a is a diagonal matrix with diagonal entries wa1 , . . . , waq for certain a1, . . . , aq

and h is a permutation matrix corresponding to some π ∈ Sym(q). This allows

one to determine χi(g) explicitly as χi(g) = trace(ah) = waf1 +· · ·+wafl , where

f1, . . . , fl are the fixed points of π. We note that χi(g
−1) = trace((ah)−1) =

trace((a−1)hh−1) = w−af1 + · · · + w−afl . Thus χi = χj if and only if ϕi = ϕj .

This implies that

[χ2, 1] =
∑

1≤i,j≤dt

[χiχj , 1] =
∑

1≤i,j≤dt

[χi, χj ] = dt

which yields that dim(FixP (V ⊗ V )) = dt. Similarly,

[χ ∧ χ, 1] =
∑

1≤i<j≤dt

[χiχj , 1] =
∑

1≤i<j≤dt

[χi, χj ] = dt/2

and thus we obtain that dim(FixP (V ∧ V )) = dt/2.
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We note that Theorem 6 is wrong for p = 2 as our examples in Section 7

show.

6. An example

Hopf’s formula can be used to determine the Schur multiplicator of an explicitly

given infinite pro-p-group of finite coclass. We use this feature to determine the

Schur multiplicators of the infinite pro-p-groups Ct = Zdt
p oCpt , where the cyclic

group Cpt acts uniserially on Zdt
p and dt = pt−1(p − 1).

7 Theorem: M(Ct) ∼= Z
dt/2
p holds, unless p = 2 and t = 1 in which case

M(Ct) = {1}.

Proof. Let d = dt and q = pt to shorten notation. For i ∈ Z let ei = 1 if

pt−1 | i−1 and ei = 0 otherwise. Then Ct has a finite presentation F/R, where

F is the free group on the generators {g, t1, . . . , td} and R is generated by the

relations

gq = 1, tg1 = t−1

d , tgi = ti−1t
−ei

d (1 < i ≤ d), t
tj

i = ti (1 ≤ j < i ≤ d).

We define the elements x, xji ∈ F for 0 ≤ j < i ≤ d by

x := gq,

x01 := tg1/t−1

d ,

x0i := tgi /(ti−1t
−ei

d ) for 2 ≤ i ≤ d, and

xji := t
tj

i /ti for 1 ≤ j < i ≤ d.

Then R/[R, F ] is generated by x := x[R, F ] and xji := xji[R, F ] for 0 ≤ j <

i ≤ d. To determine the isomorphism type of R/[R, F ], we determine the

relations among the elements x and xji. The ‘confluence test’ as described in

[7], Chapter 9.8, yields that it is sufficient to determine the relations arising

from the following list of equations

ti(tjtk) = (titj)tk for k < j < i(1)

ti(tjg) = (titj)g for j < i(2)

tig
q = (tig)gq−1 for all i(3)

ggq = gqg(4)
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where each of these equations is evaluated in F/[R, F ]. Equations (1), (3) and

(4) yield no restriction on x and xji. Equation (2) yields that:

xji = xj−1,i−1 x−ei

j−1,d x
ej

i−1,d for 2 ≤ j < i ≤ d

x1i = xi−1,d for 2 ≤ i ≤ d.

By induction on j, these are equivalent to the following set of equations:

xji = x1,i−j+1

j∏

k=2

x
−ei−j+k

1k xek

1,i−j+k for 2 ≤ j < i ≤ d

x1i

i−1∏

k=2

x
ed−i+1+k

1k = x1,d−i+2

i−1∏

k=2

xek

1,d−i+1+k for 2 ≤ i ≤ d.

As ei = ed−i+2 for 2 ≤ i ≤ d, by induction on i it follows that these equations

are equivalent to:

xji = x1,i−j+1

j∏

k=2

x
−ei−j+k

1k xek

1,i−j+k for 2 ≤ j < i ≤ d

x1i = x1,d−i+2 for 2 ≤ i ≤ d.

It is now straightforward to read off that the elements x, x0j for 1 ≤ j ≤ d

and x1i for 2 ≤ i ≤ d/2 + 1 are a free generating set for R/[R, F ]. Hence

R/[R, F ] ∼= Z
1+d+d/2
p . As Ct/C′

t is finite, it follows that R/(R ∩ F ′) ∼= Z1+d
p .

Thus M(Ct) ∼= (R ∩ F ′)/[R, F ] ∼= Z
d/2
p as desired.

Blackburn [1] determined a formula for the Schur multiplicator of a wreath

product G o H , where G and H are finite groups. This formula shows that

M(G) embeds into M(G o H) in this case. Blackburn’s proof uses the natural

presentation of a wreath product and it can be extended to the following result

on infinite pro-p-groups.

8 Theorem: Let G be an infinite pro-p-group of finite coclass and let H be

finite. Then M(G) embeds into M(G o H).

Wreath products yield an important construction for infinite pro-p-groups of

finite coclass: the groups Wt(s) = Ct o Ps−t, where Ps−t is a Sylow p-subgroup

of Sym(ps−t), are infinite pro-p-groups of finite coclass with trivial hypercenter

and central exponent t. Theorem 8 has the following direct application on the

Schur multiplicators of the groups Wt(s), which yields a concrete realisation of

the torsion-free rank of M(Wt(s)).
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9 Corollary: M(Ct) embeds into M(Wt(s)).

7. Infinite pro-2-groups of finite coclass

We determined the Schur multiplicators of the infinite pro-2-groups of coclass

at most 3 using the computer algebra system Gap [8], see Figures 1-3. A

list of all 60 infinite pro-2-groups of coclass at most 3 can be found in [5].

Figures 1-3 list these 60 pro-2-groups with their dimension d, their coclass r,

their central exponent t and their hypercenter of order pm, and it exhibits the

abelian invariants of the torsion subgroups and the torsion-free ranks of their

Schur multiplicators.

Figure 3 also shows that the main Theorem of this paper is not valid for

infinite pro-2-groups of finite coclass, as Theorem 6 does not hold for the prime

2; See the groups 40 and 41 in Figure 3.

There are 5 groups with trivial Schur multiplicator among the groups in Fig-

ures 1-3. Explicit presentations for these 5 groups are included in the following.

G1 := 〈a, t | a2 = 1, ta = t−1〉

G2 := 〈a, t | a4 = 1, ta = t−1〉

G3 := 〈a, t | a8 = 1, ta = t−1〉

G4 := 〈a, t, b | a2 = b2, b4 = 1, ta = t−1b, ba = b−1, bt = b−1〉

G5 := 〈a, b, c, t1, t2, d | a2 = d, b2 = t2, c
2 = t1, d

2 = 1, ba = c, ca = b,

cb = ct−1

1 t2d, ta1 = t2, t
a
2 = t1, t

b
1 = t−1

1 , tc2 = t−1

2 〉

d r t m T (M(G)) tf(M(G))

1 1 1 1 0 () 0

Figure 1. Infinite pro-2-groups of coclass 1
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