ISRAEL JOURNAL OF MATHEMATICS 166 (2008), 147–156 DOI: 10.1007/s11856-008-1024-z

SCHUR MULTIPLICATORS OF INFINITE PRO-*p*-GROUPS WITH FINITE COCLASS

ΒY

Bettina Eick

Institut Computational Mathematics, TU Braunschweig, Pockelsstrasse 14, 38106 Braunschweig, Germany e-mail: beick@tu-bs.de

ABSTRACT

Let G be an infinite pro-p-group of finite coclass and let M(G) be its Schur multiplicator. For p > 2, we determine the isomorphism type of $\operatorname{Hom}(M(G), \mathbb{Z}_p)$, where \mathbb{Z}_p denotes the p-adic integers, and show that M(G) is infinite. For p = 2, we investigate the Schur multiplicators of the infinite pro-2-groups of small coclass and show that M(G) can be infinite, finite or even trivial.

1. Introduction

The infinite pro-p-groups of finite coclass play a central role in the classification and investigation of finite p-groups by coclass. In particular, as shown in [3], the Schur multiplicators of the infinite pro-p-groups of coclass r have a significant influence on the Schur multiplicators of the finite p-groups of coclass r so that it is of interest to determine the infinite pro-p-groups of finite coclass with finite or even trivial Schur multiplicator. It is the aim of this paper to investigate this problem.

Let G be an infinite pro-p-group of finite coclass. Consider the series $G \ge C > T > N$, where N is the hypercenter of G, the factor T/N is the Fitting subgroup of G/N, and C/T is the center of G/T. Then C/T is cyclic of order p^t for some $t \ge 1$. (See Section 2 for background.) We call t the **central exponent** of G.

Received May 15, 2006 and in revised from November 14, 2006

BETTINA EICK

The Schur multiplicator M(G) of an infinite pro-*p*-group of finite coclass is defined as $M(G) = H_2(G, \mathbb{Z}_p)$, where \mathbb{Z}_p denotes the *p*-adic integers. The pro-*p*-group M(G) is abelian of finite rank and hence has the form M(G) = $T(G) \times F(G)$, where T(G) is a finite *p*-group and $F(G) \cong \mathbb{Z}_p^l$ for some $l \in \mathbb{N}_0$. As $\operatorname{Hom}(M(G), \mathbb{Z}_p) \cong \mathbb{Z}_p^l$, it follows that *l* can also be characterised as the rank of $\operatorname{Hom}(M(G), \mathbb{Z}_p)$. We call *l* the **torsion-free rank** of M(G) and denote it by $\operatorname{tf}(M(G))$.

The central aim of this paper is to prove the following theorem.

THEOREM A: Let p > 2 and let G be an infinite pro-p-group of finite coclass with central exponent t. Then $tf(M(G)) = p^{t-1}(p-1)/2$ and thus M(G) is infinite.

This theorem is not valid for p = 2. For example, the infinite pro-2-group

$$\langle a, t \mid a^{2^r} = 1, t^a = t^{-1} \rangle \cong \mathbb{Z}_2 \rtimes C_{2^r}$$

has coclass r and trivial Schur multiplicator. We include a list of the Schur multiplicators of all infinite pro-2-groups of coclass at most 3 below. (See Section 7.)

2. Preliminaries

In this section we briefly recall the well-known structure of infinite pro-*p*-groups of finite coclass and we outline various details on the series introduced in Section 1.

1 THEOREM: Let p > 2 and let G be an infinite pro-p-group of coclass r with series $G \ge C > T > N$ as defined in Section 1. Then

- (a) N is finite of order p^m for some m < r and G/N has coclass r m.
- (b) $T/N \cong \mathbb{Z}_p^d$ with $d = p^{s-1}(p-1)$ for some $s \in \{1, \dots, r-m\}$.
- (c) G/T is a finite non-trivial p-group which embeds into $GL(d, \mathbb{Z}_p)$.
- (d) C/T is cyclic of order p^t for some $t \in \{1, \ldots, s\}$.

Proof. (a) See [4], Lemma 7.4.4.

(b)+(c) See [4], Theorem 7.4.12.

(d) As G/T is a finite non-trivial *p*-group, its center C/T is non-trivial. By

[4], Theorem 7.4.12, The group G/T acts irreducibly on $T \otimes \mathbb{Q}_p$ and hence

has a cyclic centre. As the maximal dimension of an irreducible faithful \mathbb{Q}_p -representation of the cyclic group of order p^t has dimension $p^{t-1}(p-1)$, it follows that $1 \leq t \leq s$.

3. A cohomological characterisation

As a first step towards our aim, we characterise the torsion-free rank of the Schur multiplicator of an infinite pro-*p*-group with finite coclass using cohomology.

2 THEOREM: Let G be a pro-p-group of finite coclass. Then $tf(M(G)) = tf(H^2(G, \mathbb{Z}_p))$.

Proof. The Universal Coefficients Theorem (see [6], page 349) yields that $H^2(G, \mathbb{Z}_p)$ is an extension of $\operatorname{Ext}(G/G', \mathbb{Z}_p)$ by $\operatorname{Hom}(M(G), \mathbb{Z}_p)$. As G/G' is finite, it follows that $\operatorname{Ext}(G/G', \mathbb{Z}_p)$ is finite and hence the result follows.

4. Finite extensions and subgroups of finite index

The following theorem reduces the proof of the main theorem of this paper to the case of infinite pro-*p*-groups with finite coclass and trivial hypercenter.

3 THEOREM: Let G be an infinite pro-p-group of finite coclass and let L be a finite central subgroup in G. Then tf(M(G)) = tf(M(G/L)).

Proof. We consider the 5-term homology and cohomology sequences (see [4], Corollary 9.4.12). These imply the following two exact sequences:

 $M(G) \to M(G/L) \to L$ and $H^1(L, \mathbb{Z}_p)^G \to H^2(G/L, \mathbb{Z}_p) \to H^2(G, \mathbb{Z}_p).$

The first sequence yields that $\operatorname{tf}(M(G)) \geq \operatorname{tf}(M(G/L))$, since L is finite. The second sequence and Theorem 2 imply that $\operatorname{tf}(M(G)) \leq \operatorname{tf}(M(G/L))$, since $H^1(L,\mathbb{Z}_p)$ is finite. In summary, we obtain that $\operatorname{tf}(M(G)) = \operatorname{tf}(M(G/L))$ as desired.

The next theorem considers normal subgroups of finite index of infinite prop-groups with finite coclass. It yields an important tool towards the proof of the main theorem of this paper.

4 THEOREM: Let G be an infinite pro-p-group of finite coclass and let N be a normal subgroup of finite index in G. Then G/N acts naturally on M(N) with image $M(N)^{G/N}$ and $tf(M(G)) = tf(M(N)/M(N)^{G/N})$.

BETTINA EICK

Proof. We consider the Lyndon–Hochschild–Serre spectral sequence for $H_2(G, \mathbb{Z}_p)$ using N as normal subgroup; We refer to [9] for background. The E^2 -terms in this sequence are $E_{pq}^2 = H_p(G/N, H_q(N, \mathbb{Z}_p))$. As G/N is finite, it follows that E_{pq}^2 is finite for all p > 0. This implies that E_{pq}^r is finite for all p > 0 and $r \ge 2$ and it yields that $tf(E_{0q}^r) = tf(E_{0q}^2)$ for all q and $r \ge 2$. Hence we obtain that $tf(H_2(G, \mathbb{Z}_p)) = tf(E_{02}^\infty) = tf(H_0(G/N, H_2(N, \mathbb{Z}_p)) = tf(M(N)/M(N)^{G/N})$ as desired. ■

5. Space groups

Let G be an infinite pro-p-group with finite coclass and trivial hypercenter. Then G is an extension of a maximal abelian normal subgroup T by a finite p-group P which acts faithfully on T. Thus G has the structure of a space group with translation subgroup T and point group P.

Let $V = T \otimes \mathbb{Q}_p$. Then V and its tensor square $V \otimes V$ are natural modules for P. The module $V \otimes V$ splits as $\mathbb{Q}_p P$ -module into a symmetric and an antisymmetric part which we denote by $V \otimes V = (V \vee V) \oplus (V \wedge V)$. The subspace of fixed points under the action of P in $V \wedge V$ is denoted by $\operatorname{Fix}_P(V \wedge V)$.

5 THEOREM: Let G be an infinite pro-p-group with finite coclass and trivial hypercenter. Let P be its point group, T its translation subgroup and $V = T \otimes \mathbb{Q}_p$. Then $\operatorname{tf}(M(G)) = \dim(\operatorname{Fix}_P(V \wedge V))$.

Proof. Note that $M(T) \cong T \wedge T$ as *P*-module and thus $\operatorname{tf}(M(T)/M(T)^P) = \dim((V \wedge V)/(V \wedge V)^P) = \dim(\operatorname{Fix}_P(V \wedge V))$, since $V \wedge V$ is semisimple as *P*-module. Now the result follows directly from Theorem 4.

Next, we investigate the fixed points $\operatorname{Fix}_P(V \wedge V)$ in more detail. The following theorem together with Theorems 5 and 3 complete the proof for the main Theorem A of this paper.

6 THEOREM: Let p > 2 and let P be the point group of an infinite progroup G with finite coclass, trivial hypercenter and central exponent t. Then $\dim(\operatorname{Fix}_P(V \wedge V)) = p^{t-1}(p-1)/2.$

Proof. Let $d_s = p^{s-1}(p-1)$ be the dimension of G and let $q = p^{s-t} = d_s/d_t$ with $d_t = p^{t-1}(p-1)$. Let $U_t(s) \cong C_{p^t} \wr P_{s-t} \leq \operatorname{GL}(d_s, \mathbb{Q}_p)$, where C_{p^t} is cyclic of order p^t and P_{s-t} is a Sylow *p*-group subgroup of $\operatorname{Sym}(q)$. Let C denote the center of P. Then by [2], Theorems 17 and 19, it follows that P is conjugate to a subgroup of $U_t(s)$ such that C conjugates to the center of $U_t(s)$ and thus to the diagonal subgroup of the base group of the wreath product. We assume in the following that $P \leq U_t(s)$ with $C = Z(P) = Z(U_t(s))$. Let $\overline{\mathbb{Q}}_p$ be the algebraic closure of \mathbb{Q}_p and let $\overline{V} = V \otimes \overline{\mathbb{Q}}_p$.

The the character φ of C on \overline{V} has the form $\varphi = q(\varphi_1 + \cdots + \varphi_{d_t})$, where $\varphi_1, \ldots, \varphi_{d_t}$ are the d_t different faithful characters of C over $\overline{\mathbb{Q}}_p$. This yields that $\varphi^2 = q^2 \sum_{1 \leq i,j \leq d_t} \varphi_i \varphi_j$. Note that for every $i \in \{1, \ldots, d_t\}$ there exists a unique $j \neq i$ with $\overline{\varphi_j} = \varphi_i$. Thus

$$[\varphi^2, 1] = q^2 \sum_{1 \le i, j \le d_t} [\varphi_i \varphi_j, 1] = q^2 \sum_{1 \le i, j \le d_t} [\varphi_i, \overline{\varphi_j}] = q^2 d_t$$

which yields that $\dim(\operatorname{Fix}_C(V \otimes V)) = q^2 d_t$. Further, $\varphi \wedge \varphi = \sum_{1 \leq i < j \leq d_t} \varphi_i \varphi_j$ and hence

$$[\varphi \land \varphi, 1] = q^2 \sum_{1 \le i < j \le d_t} [\varphi_i \varphi_j, 1] = q^2 \sum_{1 \le i < j \le d_t} [\varphi_i, \overline{\varphi_j}] = q^2 d_t / 2$$

which yields that $\dim(\operatorname{Fix}_C(V \wedge V)) = q^2 d_t/2$.

The character χ of P on \overline{V} has the form $\chi = \chi_1 + \cdots + \chi_{d_t}$, where χ_i is irreducible with $\chi_i|_C = q\varphi_i$. Let $\overline{V} = \overline{V}_1 \oplus \cdots \oplus \overline{V}_{d_t}$ be the corresponding decomposition of \overline{V} into irreducible modules. We fix $i \in \{1, \ldots, d_t\}$ and investigate the action of P on $W = \overline{V}_i$. Let w be a p^t -th primitive root of unity in \overline{Q}_p . As $P \leq U_t(s)$, it follows that every element g of P acts as g = ah on W, where a is a diagonal matrix with diagonal entries w^{a_1}, \ldots, w^{a_q} for certain a_1, \ldots, a_q and h is a permutation matrix corresponding to some $\pi \in \text{Sym}(q)$. This allows one to determine $\chi_i(g)$ explicitly as $\chi_i(g) = \text{trace}(ah) = w^{a_{f_1}} + \cdots + w^{a_{f_l}}$, where f_1, \ldots, f_l are the fixed points of π . We note that $\chi_i(g^{-1}) = \text{trace}((ah)^{-1}) =$ $\text{trace}((a^{-1})^h h^{-1}) = w^{-a_{f_1}} + \cdots + w^{-a_{f_l}}$. Thus $\overline{\chi_i} = \chi_j$ if and only if $\overline{\varphi_i} = \varphi_j$. This implies that

$$[\chi^2, 1] = \sum_{1 \le i, j \le d_t} [\chi_i \chi_j, 1] = \sum_{1 \le i, j \le d_t} [\chi_i, \overline{\chi_j}] = d_t$$

which yields that $\dim(\operatorname{Fix}_P(V \otimes V)) = d_t$. Similarly,

$$[\chi \wedge \chi, 1] = \sum_{1 \le i < j \le d_t} [\chi_i \chi_j, 1] = \sum_{1 \le i < j \le d_t} [\chi_i, \overline{\chi_j}] = d_t/2$$

and thus we obtain that $\dim(\operatorname{Fix}_P(V \wedge V)) = d_t/2$.

BETTINA EICK

We note that Theorem 6 is wrong for p = 2 as our examples in Section 7 show.

6. An example

Hopf's formula can be used to determine the Schur multiplicator of an explicitly given infinite pro-*p*-group of finite coclass. We use this feature to determine the Schur multiplicators of the infinite pro-*p*-groups $C_t = \mathbb{Z}_p^{d_t} \rtimes C_{p^t}$, where the cyclic group C_{p^t} acts uniserially on $\mathbb{Z}_p^{d_t}$ and $d_t = p^{t-1}(p-1)$.

7 THEOREM: $M(C_t) \cong \mathbb{Z}_p^{d_t/2}$ holds, unless p = 2 and t = 1 in which case $M(C_t) = \{1\}$.

Proof. Let $d = d_t$ and $q = p^t$ to shorten notation. For $i \in \mathbb{Z}$ let $e_i = 1$ if $p^{t-1} | i-1$ and $e_i = 0$ otherwise. Then C_t has a finite presentation F/R, where F is the free group on the generators $\{g, t_1, \ldots, t_d\}$ and R is generated by the relations

$$g^q = 1, \ t_1^g = t_d^{-1}, \ t_i^g = t_{i-1}t_d^{-e_i} \ (1 < i \le d), \ t_i^{t_j} = t_i \ (1 \le j < i \le d)$$

We define the elements $x, x_{ji} \in F$ for $0 \leq j < i \leq d$ by

$$\begin{aligned} x &:= g^{q}, \\ x_{01} &:= t_{1}^{g} / t_{d}^{-1}, \\ x_{0i} &:= t_{i}^{g} / (t_{i-1} t_{d}^{-e_{i}}) & \text{for } 2 \leq i \leq d, \text{ and} \\ x_{ji} &:= t_{i}^{t_{j}} / t_{i} & \text{for } 1 \leq j < i \leq d. \end{aligned}$$

Then R/[R, F] is generated by $\overline{x} := x[R, F]$ and $\overline{x}_{ji} := x_{ji}[R, F]$ for $0 \leq j < i \leq d$. To determine the isomorphism type of R/[R, F], we determine the relations among the elements \overline{x} and \overline{x}_{ji} . The 'confluence test' as described in [7], Chapter 9.8, yields that it is sufficient to determine the relations arising from the following list of equations

(1) $t_i(t_j t_k) = (t_i t_j) t_k \text{ for } k < j < i$

(2)
$$t_i(t_j g) = (t_i t_j)g \text{ for } j < i$$

(3)
$$t_i g^q = (t_i g) g^{q-1} \text{ for all } i$$

where each of these equations is evaluated in F/[R, F]. Equations (1), (3) and (4) yield no restriction on \overline{x} and \overline{x}_{ji} . Equation (2) yields that:

$$\overline{x}_{ji} = \overline{x}_{j-1,i-1} \ \overline{x}_{j-1,d}^{-e_i} \ \overline{x}_{i-1,d}^{e_j} \qquad \text{for } 2 \le j < i \le d$$

$$\overline{x}_{1i} = \overline{x}_{i-1,d} \qquad \text{for } 2 \le i \le d.$$

By induction on j, these are equivalent to the following set of equations:

$$\overline{x}_{ji} = \overline{x}_{1,i-j+1} \prod_{k=2}^{j} \overline{x}_{1k}^{-e_{i-j+k}} \overline{x}_{1,i-j+k}^{e_k} \quad \text{for } 2 \le j < i \le d$$
$$\overline{x}_{1i} \prod_{k=2}^{i-1} \overline{x}_{1k}^{e_{d-i+1+k}} = \overline{x}_{1,d-i+2} \prod_{k=2}^{i-1} \overline{x}_{1,d-i+1+k}^{e_k} \quad \text{for } 2 \le i \le d.$$

As $e_i = e_{d-i+2}$ for $2 \le i \le d$, by induction on *i* it follows that these equations are equivalent to:

$$\overline{x}_{ji} = \overline{x}_{1,i-j+1} \prod_{k=2}^{j} \overline{x}_{1k}^{-e_{i-j+k}} \overline{x}_{1,i-j+k}^{e_k} \quad \text{for } 2 \le j < i \le d$$
$$\overline{x}_{1i} = \overline{x}_{1,d-i+2} \quad \text{for } 2 \le i \le d.$$

It is now straightforward to read off that the elements \overline{x} , \overline{x}_{0j} for $1 \leq j \leq d$ and \overline{x}_{1i} for $2 \leq i \leq d/2 + 1$ are a free generating set for R/[R, F]. Hence $R/[R, F] \cong \mathbb{Z}_p^{1+d+d/2}$. As C_t/C'_t is finite, it follows that $R/(R \cap F') \cong \mathbb{Z}_p^{1+d}$. Thus $M(C_t) \cong (R \cap F')/[R, F] \cong \mathbb{Z}_p^{d/2}$ as desired.

Blackburn [1] determined a formula for the Schur multiplicator of a wreath product $G \wr H$, where G and H are finite groups. This formula shows that M(G) embeds into $M(G \wr H)$ in this case. Blackburn's proof uses the natural presentation of a wreath product and it can be extended to the following result on infinite pro-*p*-groups.

8 THEOREM: Let G be an infinite pro-p-group of finite coclass and let H be finite. Then M(G) embeds into $M(G \wr H)$.

Wreath products yield an important construction for infinite pro-*p*-groups of finite coclass: the groups $W_t(s) = C_t \wr P_{s-t}$, where P_{s-t} is a Sylow *p*-subgroup of Sym (p^{s-t}) , are infinite pro-*p*-groups of finite coclass with trivial hypercenter and central exponent *t*. Theorem 8 has the following direct application on the Schur multiplicators of the groups $W_t(s)$, which yields a concrete realisation of the torsion-free rank of $M(W_t(s))$. 9 COROLLARY: $M(C_t)$ embeds into $M(W_t(s))$.

7. Infinite pro-2-groups of finite coclass

We determined the Schur multiplicators of the infinite pro-2-groups of coclass at most 3 using the computer algebra system Gap [8], see Figures 1-3. A list of all 60 infinite pro-2-groups of coclass at most 3 can be found in [5]. Figures 1-3 list these 60 pro-2-groups with their dimension d, their coclass r, their central exponent t and their hypercenter of order p^m , and it exhibits the abelian invariants of the torsion subgroups and the torsion-free ranks of their Schur multiplicators.

Figure 3 also shows that the main Theorem of this paper is not valid for infinite pro-2-groups of finite coclass, as Theorem 6 does not hold for the prime 2; See the groups 40 and 41 in Figure 3.

There are 5 groups with trivial Schur multiplicator among the groups in Figures 1-3. Explicit presentations for these 5 groups are included in the following.

$$\begin{split} G_1 &:= \langle a, t \mid a^2 = 1, t^a = t^{-1} \rangle \\ G_2 &:= \langle a, t \mid a^4 = 1, t^a = t^{-1} \rangle \\ G_3 &:= \langle a, t \mid a^8 = 1, t^a = t^{-1} \rangle \\ G_4 &:= \langle a, t, b \mid a^2 = b^2, b^4 = 1, t^a = t^{-1}b, b^a = b^{-1}, b^t = b^{-1} \rangle \\ G_5 &:= \langle a, b, c, t_1, t_2, d \mid a^2 = d, b^2 = t_2, c^2 = t_1, d^2 = 1, b^a = c, c^a = b, \\ c^b &= ct_1^{-1}t_2d, t_1^a = t_2, t_2^a = t_1, t_1^b = t_1^{-1}, t_2^c = t_2^{-1} \rangle \end{split}$$

	d	r	t	m	T(M(G))	$\operatorname{tf}(M(G))$		
1	1	1	1	0	()	0		

Figure 1. Infinite pro-2-groups of coclass 1

References

- N. Blackburn, Some homology groups of wreathe products, Illinois Journal of Mathematics 16 (1972), 116–129.
- [2] B. Eick, Determination of the uniserial space groups with a given coclass, Journal of the London Mathematical Society 71 (2005), 622–642.

	d	r	t	m	T(M(G))	$\operatorname{tf}(M(G))$
1	1	2	1	1	(2,2)	0
2	1	2	1	1	(2)	0
3	1	2	1	1	()	0
4	2	2	2	0	()	1
5	2	2	1	0	(2)	0

Figure 2. Infinite pro-2-groups of coclass 2

	d	r	t	m	T(M(G))	tf(M(G))		d	r	t	m	T(M(G))	tf(M(G))
1	1	3	1	2	(2,2,2,2,2)	0	28	2	3	1	1	(2)	0
2	1	3	1	2	(2,2,2)	0	29	2	3	1	1	(2,2)	0
3	1	3	1	2	(2,2)	0	30	2	3	1	1	(2)	0
4	1	3	1	2	(2,2)	0	31	2	3	1	1	(2)	0
5	1	3	1	2	(2,2)	0	32	2	3	1	1	0	0
6	1	3	1	2	(2,4)	0	33	2	3	1	1	(2,2,2)	0
7	1	3	1	2	(2,2,2)	0	34	4	3	3	0	0	2
8	1	3	1	2	(2)	0	35	4	3	2	0	0	1
9	1	3	1	2	(2)	0	36	4	3	2	0	(2,2)	1
10	1	3	1	2	(4)	0	37	4	3	2	0	(2,2)	1
11	1	3	1	2	(2,2)	0	38	4	3	2	0	(2)	1
12	1	3	1	2	(2)	0	39	4	3	1	0	(2,2)	0
13	1	3	1	2	(2)	0	40	4	3	1	0	0	1
14	1	3	1	2	(2)	0	41	4	3	1	0	(2,2)	1
15	1	3	1	2	(2)	0	42	4	3	1	0	(2,2)	0
16	1	3	1	2	(2)	0	43	4	3	1	0	(2,2)	0
17	1	3	1	2	0	0	44	4	3	1	0	(2,2,4)	0
18	1	3	1	2	()	0	45	4	3	1	0	(2)	0
19	2	3	2	1	(2,2)	1	46	4	3	1	0	(2,2)	0
20	2	3	2	1	(2)	1	47	4	3	1	0	(2,2,8)	0
21	2	3	2	1	(2)	1	48	4	3	1	0	(2,4)	0
22	2	3	2	1	0	1	49	4	3	1	0	(2,2,2)	0
23	2	3	2	1	0	1	50	4	3	1	0	(2,2)	0
24	2	3	2	1	0	1	51	4	3	1	0	(2,4)	0
25	2	3	1	1	(2,2,2)	0	52	4	3	1	0	(2,2,2)	0
26	2	3	1	1	(2,2)	0	53	4	3	1	0	(2,2)	0
27	2	3	1	1	(2,2)	0	54	4	3	1	0	()	2

Figure 3. Infinite pro-2-groups of coclass 3

- [3] B. Eick, Schur multiplicators of finite p-groups with fixed coclass, Israel Journal of Mathematics 166 (2008), 157–166.
- [4] C. R. Leedham-Green and S. McKay, The Structure of Groups of Prime Power Order, London Mathematical Society Monographs, Oxford Science Publications, Oxford University Press, Oxford, 2002.
- [5] M. F. Newman and E. A. O'Brien, Classifying 2-groups by coclass, Transactions of the American Mathematical Society 351 (1999), 131–169
- [6] D. J. S. Robinson, A Course in the Theory of Groups, Graduate Texts in Mathematics, volume 80, Springer-Verlag, New York, Heidelberg, Berlin, 1982.
- [7] C. C. Sims, Computation with Finitely Presented Groups, Cambridge University Press, Cambridge, 1994.

- [8] The GAP Group, GAP Groups, Algorithms and Programming, Version 4.4, Available from http://www.gap-system.org, 2005.
- [9] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, volume 38, Cambridge University Press, Cambridge, 1994.