ISRAEL JOURNAL OF MATHEMATICS 166 (2008), 147–156 DOI: 10.1007/s11856-008-1024-z

SCHUR MULTIPLICATORS OF INFINITE PRO-p-GROUPS WITH FINITE COCLASS

BY

BETTINA EICK

Institut Computational Mathematics, TU Braunschweig, Pockelsstrasse 14, 38106 Braunschweig, Germany e-mail: beick@tu-bs.de

ABSTRACT

Let G be an infinite pro-p-group of finite coclass and let $M(G)$ be its Schur multiplicator. For $p > 2$, we determine the isomorphism type of $Hom(M(G), \mathbb{Z}_p)$, where \mathbb{Z}_p denotes the p-adic integers, and show that $M(G)$ is infinite. For $p = 2$, we investigate the Schur multiplicators of the infinite pro-2-groups of small coclass and show that $M(G)$ can be infinite, finite or even trivial.

1. Introduction

The infinite pro-p-groups of finite coclass play a central role in the classification and investigation of finite p -groups by coclass. In particular, as shown in [3], the Schur multiplicators of the infinite pro- p -groups of coclass r have a significant influence on the Schur multiplicators of the finite p -groups of coclass r so that it is of interest to determine the infinite pro-p-groups of finite coclass with finite or even trivial Schur multiplicator. It is the aim of this paper to investigate this problem.

Let G be an infinite pro-p-group of finite coclass. Consider the series $G \geq$ $C > T > N$, where N is the hypercenter of G, the factor T/N is the Fitting subgroup of G/N , and C/T is the center of G/T . Then C/T is cyclic of order p^t for some $t \geq 1$. (See Section 2 for background.) We call t the **central** exponent of G.

Received May 15, 2006 and in revised from November 14, 2006

148 BETTINA EICK Isr. J. Math.

The Schur multiplicator $M(G)$ of an infinite pro-*p*-group of finite coclass is defined as $M(G) = H_2(G, \mathbb{Z}_p)$, where \mathbb{Z}_p denotes the *p*-adic integers. The pro-p-group $M(G)$ is abelian of finite rank and hence has the form $M(G)$ = $T(G) \times F(G)$, where $T(G)$ is a finite p-group and $F(G) \cong \mathbb{Z}_p^l$ for some $l \in \mathbb{N}_0$. As $\text{Hom}(M(G), \mathbb{Z}_p) \cong \mathbb{Z}_p^l$, it follows that l can also be characterised as the rank of Hom $(M(G), \mathbb{Z}_p)$. We call l the **torsion-free rank** of $M(G)$ and denote it by $tf(M(G))$.

The central aim of this paper is to prove the following theorem.

THEOREM A: Let $p > 2$ and let G be an infinite pro-p-group of finite coclass with central exponent t. Then $tf(M(G)) = p^{t-1}(p-1)/2$ and thus $M(G)$ is infinite.

This theorem is not valid for $p = 2$. For example, the infinite pro-2-group

$$
\langle a, t \mid a^{2^r} = 1, t^a = t^{-1} \rangle \cong \mathbb{Z}_2 \rtimes C_{2^r}
$$

has coclass r and trivial Schur multiplicator. We include a list of the Schur multiplicators of all infinite pro-2-groups of coclass at most 3 below. (See Section 7.)

2. Preliminaries

In this section we briefly recall the well-known structure of infinite pro-p-groups of finite coclass and we outline various details on the series introduced in Section 1.

1 THEOREM: Let $p > 2$ and let G be an infinite pro-p-group of coclass r with series $G \ge C > T > N$ as defined in Section 1. Then

- (a) N is finite of order p^m for some $m < r$ and G/N has coclass $r m$.
- (b) $T/N \cong \mathbb{Z}_p^d$ with $d = p^{s-1}(p-1)$ for some $s \in \{1, \ldots, r-m\}.$
- (c) G/T is a finite non-trivial p-group which embeds into $GL(d, \mathbb{Z}_p)$.
- (d) C/T is cyclic of order p^t for some $t \in \{1, \ldots, s\}.$

Proof. (a) See [4], Lemma 7.4.4.

 $(b)+(c)$ See [4], Theorem 7.4.12.

(d) As G/T is a finite non-trivial p-group, its center C/T is non-trivial. By [4], Theorem 7.4.12, The group G/T acts irreducibly on $T \otimes \mathbb{Q}_p$ and hence has a cyclic centre. As the maximal dimension of an irreducible faithful \mathbb{Q}_p representation of the cyclic group of order p^t has dimension $p^{t-1}(p-1)$, it follows that $1 \leq t \leq s$. ш

3. A cohomological characterisation

As a first step towards our aim, we characterise the torsion-free rank of the Schur multiplicator of an infinite pro-*p*-group with finite coclass using cohomology.

2 THEOREM: Let G be a pro-p-group of finite coclass. Then $tf(M(G)) =$ $\mathrm{tf}(H^2(G,\mathbb{Z}_p)).$

Proof. The Universal Coefficients Theorem (see [6], page 349) yields that $H^2(G,\mathbb{Z}_p)$ is an extension of $Ext(G/G',\mathbb{Z}_p)$ by $Hom(M(G),\mathbb{Z}_p)$. As G/G' is finite, it follows that $\text{Ext}(G/G', \mathbb{Z}_p)$ is finite and hence the result follows. Ш

4. Finite extensions and subgroups of finite index

The following theorem reduces the proof of the main theorem of this paper to the case of infinite pro-p-groups with finite coclass and trivial hypercenter.

3 THEOREM: Let G be an infinite pro-p-group of finite coclass and let L be a finite central subgroup in G. Then $tf(M(G)) = tf(M(G/L)).$

Proof. We consider the 5-term homology and cohomology sequences (see [4], Corollary 9.4.12). These imply the following two exact sequences:

 $M(G) \to M(G/L) \to L$ and $H^1(L, \mathbb{Z}_p)^G \to H^2(G/L, \mathbb{Z}_p) \to H^2(G, \mathbb{Z}_p).$

The first sequence yields that $tf(M(G)) \geq tf(M(G/L))$, since L is finite. The second sequence and Theorem 2 imply that $tf(M(G)) \le tf(M(G/L))$, since $H¹(L, \mathbb{Z}_p)$ is finite. In summary, we obtain that $tf(M(G)) = tf(M(G/L))$ as desired.

The next theorem considers normal subgroups of finite index of infinite prop-groups with finite coclass. It yields an important tool towards the proof of the main theorem of this paper.

4 Theorem: Let G be an infinite pro-p-group of finite coclass and let N be a normal subgroup of finite index in G. Then G/N acts naturally on $M(N)$ with image $M(N)^{G/N}$ and $tf(M(G)) = tf(M(N)/M(N)^{G/N})$.

150 BETTINA EICK Isr. J. Math.

Proof. We consider the Lyndon–Hochschild–Serre spectral sequence for $H_2(G, \mathbb{Z}_p)$ using N as normal subgroup; We refer to [9] for background. The E^2 -terms in this sequence are $E_{pq}^2 = H_p(G/N, H_q(N, \mathbb{Z}_p)).$ As G/N is finite, it follows that E_{pq}^2 is finite for all $p > 0$. This implies that E_{pq}^r is finite for all $p > 0$ and $r \ge 2$ and it yields that $\text{tf}(E_{0q}^r) = \text{tf}(E_{0q}^2)$ for all q and $r \ge 2$. Hence we obtain that $\text{tf}(H_2(G, \mathbb{Z}_p)) = \text{tf}(E_{02}^{\infty}) = \text{tf}(H_2(G/N, H_2(N, \mathbb{Z}_p))) =$ $\operatorname{tf}(M(N)/M(N)^{G/N})$ as desired. Г

5. Space groups

Let G be an infinite pro-p-group with finite coclass and trivial hypercenter. Then G is an extension of a maximal abelian normal subgroup T by a finite p -group P which acts faithfully on T. Thus G has the structure of a space group with translation subgroup T and point group P .

Let $V = T \otimes \mathbb{Q}_p$. Then V and its tensor square $V \otimes V$ are natural modules for P. The module $V \otimes V$ splits as \mathbb{Q}_p P-module into a symmetric and an antisymmetric part which we denote by $V \otimes V = (V \vee V) \oplus (V \wedge V)$. The subspace of fixed points under the action of P in $V \wedge V$ is denoted by $Fix_{P}(V \wedge V)$.

5 Theorem: Let G be an infinite pro-p-group with finite coclass and trivial hypercenter. Let P be its point group, T its translation subgroup and $V = T \otimes \mathbb{Q}_p$. Then $\operatorname{tf}(M(G)) = \dim(\operatorname{Fix}_P(V \wedge V)).$

Proof. Note that $M(T) \cong T \wedge T$ as P-module and thus $tf(M(T)/M(T)^P)$ = $\dim((V \wedge V)/(V \wedge V)^P) = \dim(\text{Fix}_P(V \wedge V)),$ since $V \wedge V$ is semisimple as P-module. Now the result follows directly from Theorem 4. П

Next, we investigate the fixed points $Fix_P (V \wedge V)$ in more detail. The following theorem together with Theorems 5 and 3 complete the proof for the main Theorem A of this paper.

6 THEOREM: Let $p > 2$ and let P be the point group of an infinite pro-pgroup G with finite coclass, trivial hypercenter and central exponent t . Then dim(Fix_P(V \wedge V)) = $p^{t-1}(p-1)/2$.

Proof. Let $d_s = p^{s-1}(p-1)$ be the dimension of G and let $q = p^{s-t} = d_s/d_t$ with $d_t = p^{t-1}(p-1)$. Let $U_t(s) \cong C_{p^t} \wr P_{s-t} \leq \text{GL}(d_s, \mathbb{Q}_p)$, where C_{p^t} is cyclic of order p^t and P_{s-t} is a Sylow p-group subgroup of Sym (q) . Let C denote the center of P. Then by [2], Theorems 17 and 19, it follows that P is conjugate to a subgroup of $U_t(s)$ such that C conjugates to the center of $U_t(s)$ and thus to the diagonal subgroup of the base group of the wreath product. We assume in the following that $P \leq U_t(s)$ with $C = Z(P) = Z(U_t(s))$. Let $\overline{\mathbb{Q}}_p$ be the algebraic closure of \mathbb{Q}_p and let $V = V \otimes \mathbb{Q}_p$.

The the character φ of C on V has the form $\varphi = q(\varphi_1 + \cdots + \varphi_{d_t}),$ where $\varphi_1, \ldots, \varphi_{d_t}$ are the d_t different faithful characters of C over $\overline{\mathbb{Q}}_p$. This yields that $\varphi^2 = q^2 \sum_{1 \leq i,j \leq d_t} \varphi_i \varphi_j$. Note that for every $i \in \{1, ..., d_t\}$ there exists a unique $j \neq i$ with $\overline{\varphi_j} = \varphi_i$. Thus

$$
[\varphi^2, 1] = q^2 \sum_{1 \le i, j \le d_t} [\varphi_i \varphi_j, 1] = q^2 \sum_{1 \le i, j \le d_t} [\varphi_i, \overline{\varphi_j}] = q^2 d_t
$$

which yields that $\dim(\text{Fix}_C(V \otimes V)) = q^2 d_t$. Further, $\varphi \wedge \varphi = \sum_{1 \leq i < j \leq d_t} \varphi_i \varphi_j$ and hence

$$
[\varphi \wedge \varphi, 1] = q^2 \sum_{1 \le i < j \le d_t} [\varphi_i \varphi_j, 1] = q^2 \sum_{1 \le i < j \le d_t} [\varphi_i, \overline{\varphi_j}] = q^2 d_t / 2
$$

which yields that $\dim(\text{Fix}_C(V \wedge V)) = q^2 d_t/2$.

The character χ of P on V has the form $\chi = \chi_1 + \cdots + \chi_{d_t}$, where χ_i is irreducible with $\chi_i|_C = q\varphi_i$. Let $V = V_1 \oplus \cdots \oplus V_{d_t}$ be the corresponding decomposition of \overline{V} into irreducible modules. We fix $i \in \{1, \ldots, d_t\}$ and investigate the action of P on $W = \overline{V}_i$. Let w be a p^t -th primitive root of unity in \overline{Q}_p . As $P \le U_t(s)$, it follows that every element g of P acts as $g = ah$ on W, where *a* is a diagonal matrix with diagonal entries w^{a_1}, \ldots, w^{a_q} for certain a_1, \ldots, a_q and h is a permutation matrix corresponding to some $\pi \in \text{Sym}(q)$. This allows one to determine $\chi_i(g)$ explicitly as $\chi_i(g) = \text{trace}(ah) = w^{a_{f_1}} + \cdots + w^{a_{f_l}}$, where f_1, \ldots, f_l are the fixed points of π . We note that $\chi_i(g^{-1}) = \text{trace}((ah)^{-1}) =$ trace($(a^{-1})^h h^{-1}$) = $w^{-a_{f_1}} + \cdots + w^{-a_{f_l}}$. Thus $\overline{\chi_i} = \chi_j$ if and only if $\overline{\varphi_i} = \varphi_j$. This implies that

$$
[\chi^2, 1] = \sum_{1 \le i, j \le d_t} [\chi_i \chi_j, 1] = \sum_{1 \le i, j \le d_t} [\chi_i, \overline{\chi_j}] = d_t
$$

which yields that dim(Fix $_P(V \otimes V) = d_t$. Similarly,

$$
[\chi \wedge \chi, 1] = \sum_{1 \le i < j \le d_t} [\chi_i \chi_j, 1] = \sum_{1 \le i < j \le d_t} [\chi_i, \overline{\chi_j}] = d_t/2
$$

and thus we obtain that dim(Fix $_P(V \wedge V) = d_t/2$.

We note that Theorem 6 is wrong for $p = 2$ as our examples in Section 7 show.

6. An example

Hopf's formula can be used to determine the Schur multiplicator of an explicitly given infinite pro-p-group of finite coclass. We use this feature to determine the Schur multiplicators of the infinite pro-*p*-groups $C_t = \mathbb{Z}_p^{d_t} \rtimes C_{p^t}$, where the cyclic group C_{p^t} acts uniserially on $\mathbb{Z}_p^{d_t}$ and $d_t = p^{t-1}(p-1)$.

7 THEOREM: $M(C_t) \cong \mathbb{Z}_p^{d_t/2}$ holds, unless $p = 2$ and $t = 1$ in which case $M(C_t) = \{1\}.$

Proof. Let $d = d_t$ and $q = p^t$ to shorten notation. For $i \in \mathbb{Z}$ let $e_i = 1$ if p^{t-1} | $i-1$ and $e_i = 0$ otherwise. Then C_t has a finite presentation F/R , where F is the free group on the generators $\{g, t_1, \ldots, t_d\}$ and R is generated by the relations

$$
g^{q} = 1, t_{1}^{g} = t_{d}^{-1}, t_{i}^{g} = t_{i-1}t_{d}^{-e_{i}} \ (1 < i \leq d), t_{i}^{t_{j}} = t_{i} \ (1 \leq j < i \leq d).
$$

We define the elements $x, x_{ji} \in F$ for $0 \leq j < i \leq d$ by

$$
x := gq,
$$

\n
$$
x_{01} := t_1^q / t_d^{-1},
$$

\n
$$
x_{0i} := t_i^q / (t_{i-1} t_d^{-e_i}) \text{ for } 2 \le i \le d, \text{ and}
$$

\n
$$
x_{ji} := t_i^{t_j} / t_i \text{ for } 1 \le j < i \le d.
$$

Then $R/[R, F]$ is generated by $\overline{x} := x[R, F]$ and $\overline{x}_{ji} := x_{ji}[R, F]$ for $0 \le j <$ $i \leq d$. To determine the isomorphism type of $R/[R, F]$, we determine the relations among the elements \bar{x} and \bar{x}_{ji} . The 'confluence test' as described in [7], Chapter 9.8, yields that it is sufficient to determine the relations arising from the following list of equations

(1) $t_i(t_i t_k) = (t_i t_i) t_k$ for $k < j < i$

(2)
$$
t_i(t_j g) = (t_i t_j) g \text{ for } j < i
$$

(3)
$$
t_i g^q = (t_i g) g^{q-1} \text{ for all } i
$$

$$
(4) \t\t\t gg^q = g^q g
$$

where each of these equations is evaluated in $F/[R, F]$. Equations (1), (3) and (4) yield no restriction on \bar{x} and \bar{x}_{ji} . Equation (2) yields that:

$$
\overline{x}_{ji} = \overline{x}_{j-1,i-1} \overline{x}_{j-1,d}^{-e_i} \overline{x}_{i-1,d}^{e_j} \quad \text{for } 2 \le j < i \le d
$$

$$
\overline{x}_{1i} = \overline{x}_{i-1,d} \quad \text{for } 2 \le i \le d.
$$

By induction on j , these are equivalent to the following set of equations:

$$
\overline{x}_{ji} = \overline{x}_{1,i-j+1} \prod_{k=2}^{j} \overline{x}_{1k}^{-e_{i-j+k}} \overline{x}_{1,i-j+k}^{e_k} \quad \text{for } 2 \le j < i \le d
$$
\n
$$
\overline{x}_{1i} \prod_{k=2}^{i-1} \overline{x}_{1k}^{e_{d-i+1+k}} = \overline{x}_{1,d-i+2} \prod_{k=2}^{i-1} \overline{x}_{1,d-i+1+k}^{e_k} \quad \text{for } 2 \le i \le d.
$$

As $e_i = e_{d-i+2}$ for $2 \leq i \leq d$, by induction on i it follows that these equations are equivalent to:

$$
\overline{x}_{ji} = \overline{x}_{1,i-j+1} \prod_{k=2}^{j} \overline{x}_{1k}^{-e_{i-j+k}} \overline{x}_{1,i-j+k}^{e_k} \quad \text{for } 2 \le j < i \le d
$$
\n
$$
\overline{x}_{1i} = \overline{x}_{1,d-i+2} \quad \text{for } 2 \le i \le d.
$$

It is now straightforward to read off that the elements \overline{x} , \overline{x}_{0j} for $1 \leq j \leq d$ and \overline{x}_{1i} for $2 \le i \le d/2 + 1$ are a free generating set for $R/[R, F]$. Hence $R/[R, F] \cong \mathbb{Z}_p^{1+d+d/2}$. As C_t/C_t' is finite, it follows that $R/(R \cap F') \cong \mathbb{Z}_p^{1+d}$. Thus $M(C_t) \cong (R \cap F')/[R, F] \cong \mathbb{Z}_p^{d/2}$ as desired.

Blackburn [1] determined a formula for the Schur multiplicator of a wreath product $G \wr H$, where G and H are finite groups. This formula shows that $M(G)$ embeds into $M(G \nmid H)$ in this case. Blackburn's proof uses the natural presentation of a wreath product and it can be extended to the following result on infinite pro-p-groups.

8 Theorem: Let G be an infinite pro-p-group of finite coclass and let H be finite. Then $M(G)$ embeds into $M(G \wr H)$.

Wreath products yield an important construction for infinite pro-p-groups of finite coclass: the groups $W_t(s) = C_t \wr P_{s-t}$, where P_{s-t} is a Sylow p-subgroup of $\text{Sym}(p^{s-t})$, are infinite pro-*p*-groups of finite coclass with trivial hypercenter and central exponent t. Theorem 8 has the following direct application on the Schur multiplicators of the groups $W_t(s)$, which yields a concrete realisation of the torsion-free rank of $M(W_t(s))$.

9 COROLLARY: $M(C_t)$ embeds into $M(W_t(s))$.

7. Infinite pro-2-groups of finite coclass

We determined the Schur multiplicators of the infinite pro-2-groups of coclass at most 3 using the computer algebra system Gap [8], see Figures 1-3. A list of all 60 infinite pro-2-groups of coclass at most 3 can be found in [5]. Figures 1-3 list these 60 pro-2-groups with their dimension d , their coclass r , their central exponent t and their hypercenter of order p^m , and it exhibits the abelian invariants of the torsion subgroups and the torsion-free ranks of their Schur multiplicators.

Figure 3 also shows that the main Theorem of this paper is not valid for infinite pro-2-groups of finite coclass, as Theorem 6 does not hold for the prime 2; See the groups 40 and 41 in Figure 3.

There are 5 groups with trivial Schur multiplicator among the groups in Figures 1-3. Explicit presentations for these 5 groups are included in the following.

$$
G_1 := \langle a, t \mid a^2 = 1, t^a = t^{-1} \rangle
$$

\n
$$
G_2 := \langle a, t \mid a^4 = 1, t^a = t^{-1} \rangle
$$

\n
$$
G_3 := \langle a, t \mid a^8 = 1, t^a = t^{-1} \rangle
$$

\n
$$
G_4 := \langle a, t, b \mid a^2 = b^2, b^4 = 1, t^a = t^{-1}b, b^a = b^{-1}, b^t = b^{-1} \rangle
$$

\n
$$
G_5 := \langle a, b, c, t_1, t_2, d \mid a^2 = d, b^2 = t_2, c^2 = t_1, d^2 = 1, b^a = c, c^a = b,
$$

\n
$$
c^b = ct_1^{-1}t_2d, t_1^a = t_2, t_2^a = t_1, t_1^b = t_1^{-1}, t_2^c = t_2^{-1} \rangle
$$

		m	$1 \overline{T(M(G))}$ $\text{tf}(M(G))$	

Figure 1. Infinite pro-2-groups of coclass 1

References

- [1] N. Blackburn, Some homology groups of wreathe products, Illinois Journal of Mathematics 16 (1972), 116–129.
- [2] B. Eick, Determination of the uniserial space groups with a given coclass, Journal of the London Mathematical Society 71 (2005), 622–642.

	d	t	m	$T(M(G))$ $tf(M(G))$	
				(2,2)	
$\overline{2}$				(2)	
3					
4					
5				2	

Figure 2. Infinite pro-2-groups of coclass 2

	\boldsymbol{d}	\boldsymbol{r}	\boldsymbol{t}	\boldsymbol{m}	T(M(G))	tf(M(G))		\boldsymbol{d}	\boldsymbol{r}	\boldsymbol{t}	\boldsymbol{m}	T(M(G))	tf(M(G))
1	$\mathbf{1}$	3	$\mathbf{1}$	$\overline{2}$	(2,2,2,2,2)	$\mathbf{0}$	28	$\overline{2}$	3	$\mathbf{1}$	$\mathbf{1}$	(2)	$\mathbf{0}$
$\overline{2}$	1	3	$\mathbf{1}$	$\overline{2}$	(2,2,2)	$\overline{0}$	29	$\overline{2}$	3	$\mathbf{1}$	$\mathbf{1}$	(2,2)	Ω
3	1	3	$\mathbf{1}$	$\overline{2}$	(2,2)	$\overline{0}$	30	$\mathbf{2}$	3	$\mathbf{1}$	$\mathbf{1}$	(2)	θ
$\overline{4}$	1	3	$\mathbf{1}$	$\overline{2}$	(2,2)	$\overline{0}$	31	$\overline{2}$	3	$\mathbf{1}$	1	(2)	θ
5	1	3	$\mathbf{1}$	$\overline{2}$	(2,2)	$\overline{0}$	32	$\overline{2}$	3	$\mathbf{1}$	$\mathbf{1}$	$\left(\right)$	$\mathbf{0}$
6	1	3	$\mathbf{1}$	$\overline{2}$	(2,4)	$\overline{0}$	33	$\overline{2}$	3	$\mathbf{1}$	1.	(2,2,2)	θ
7	1	3	$\mathbf{1}$	$\overline{2}$	(2,2,2)	$\boldsymbol{0}$	34	$\overline{4}$	3	3	Ω	$\left(\right)$	$\boldsymbol{2}$
8	1	3	$\mathbf{1}$	$\overline{2}$	(2)	$\mathbf{0}$	35	4	3	$\overline{2}$	θ	$\left(\right)$	1
9	1	3	$\mathbf{1}$	$\overline{2}$	(2)	$\boldsymbol{0}$	36	$\overline{4}$	3	$\overline{2}$	$\mathbf{0}$	(2,2)	1
10	1	3	$\mathbf{1}$	$\overline{2}$	(4)	$\mathbf{0}$	37	$\overline{4}$	3	$\overline{2}$	Ω	(2,2)	1
11	1	3	$\mathbf{1}$	$\overline{2}$	(2,2)	$\mathbf{0}$	38	4	3	$\overline{2}$	θ	(2)	1
12	1	3	$\mathbf{1}$	$\overline{2}$	(2)	$\overline{0}$	39	$\overline{4}$	3	$\mathbf{1}$	Ω	(2,2)	$\mathbf{0}$
13	1	3	$\mathbf{1}$	$\overline{2}$	(2)	$\overline{0}$	40	4	3	$\mathbf{1}$	Ω	$\left(\right)$	$\mathbf 1$
14	1	3	$\mathbf{1}$	$\overline{2}$	(2)	$\mathbf{0}$	41	$\overline{4}$	3	$\mathbf{1}$	θ	(2,2)	1
15	1	3	$\mathbf{1}$	$\overline{2}$	(2)	$\boldsymbol{0}$	42	$\overline{4}$	3	$\mathbf{1}$	$\mathbf{0}$	(2,2)	$\mathbf{0}$
16	1	3	$\mathbf{1}$	$\overline{2}$	(2)	$\mathbf{0}$	43	4	3	$\mathbf{1}$	θ	(2,2)	$\boldsymbol{0}$
17	1	3	$\mathbf{1}$	$\overline{2}$	$\left(\right)$	$\mathbf{0}$	44	$\overline{4}$	3	$\mathbf{1}$	$\overline{0}$	(2,2,4)	$\mathbf{0}$
18	1	3	$\mathbf{1}$	$\overline{2}$	$\left(\right)$	$\mathbf{0}$	45	$\overline{4}$	3	$\mathbf{1}$	$\overline{0}$	(2)	θ
19	$\overline{2}$	3	$\overline{2}$	$\mathbf{1}$	(2,2)	$\mathbf{1}$	46	4	3	$\mathbf{1}$	$\overline{0}$	(2,2)	$\boldsymbol{0}$
20	$\overline{2}$	3	$\overline{2}$	1	(2)	1	47	$\overline{4}$	3	$\mathbf{1}$	Ω	(2,2,8)	$\mathbf{0}$
21	$\overline{2}$	3	$\overline{2}$	1	(2)	1	48	$\overline{4}$	3	$\mathbf{1}$	θ	(2,4)	$\mathbf{0}$
22	$\overline{2}$	3	$\overline{2}$	1	$\left(\right)$	$\mathbf{1}$	49	$\overline{4}$	3	$\mathbf{1}$	θ	(2,2,2)	$\mathbf{0}$
23	$\overline{2}$	3	$\overline{2}$	1	$\left(\right)$	1	50	$\overline{4}$	3	$\mathbf{1}$	θ	(2,2)	$\mathbf{0}$
24	$\overline{2}$	3	$\overline{2}$	1	$\left(\right)$	1	51	$\overline{4}$	3	$\mathbf{1}$	θ	(2,4)	$\mathbf{0}$
25	$\overline{2}$	3	$\mathbf{1}$	1	(2,2,2)	$\overline{0}$	52	4	3	$\mathbf{1}$	θ	(2,2,2)	$\mathbf{0}$
26	$\overline{2}$	3	$\mathbf{1}$	1	(2,2)	$\overline{0}$	53	4	3	$\mathbf{1}$	θ	(2,2)	$\boldsymbol{0}$
27	$\overline{2}$	3	$\mathbf{1}$	$\mathbf{1}$	(2,2)	$\mathbf{0}$	54	4	3	$\mathbf{1}$	$\overline{0}$	$\left(\right)$	$\overline{2}$

Figure 3. Infinite pro-2-groups of coclass 3

- [3] B. Eick, Schur multiplicators of finite p-groups with fixed coclass, Israel Journal of Mathematics 166 (2008), 157–166.
- [4] C. R. Leedham-Green and S. McKay, The Structure of Groups of Prime Power Order, London Mathematical Society Monographs, Oxford Science Publications, Oxford University Press, Oxford, 2002.
- [5] M. F. Newman and E. A. O'Brien, Classifying 2-groups by coclass, Transactions of the American Mathematical Society 351 (1999), 131–169
- [6] D. J. S. Robinson, A Course in the Theory of Groups, Graduate Texts in Mathematics, volume 80, Springer-Verlag, New York, Heidelberg, Berlin, 1982.
- [7] C. C. Sims, Computation with Finitely Presented Groups, Cambridge University Press, Cambridge, 1994.
- [8] The GAP Group, GAP Groups, Algorithms and Programming, Version 4.4, Available from http://www.gap-system.org, 2005.
- [9] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, volume 38, Cambridge University Press, Cambridge, 1994.